49 research outputs found

    Decision Diagram Based Symbolic Algorithm for Evaluating the Reliability of a Multistate Flow Network

    Get PDF
    Evaluating the reliability of Multistate Flow Network (MFN) is an NP-hard problem. Ordered binary decision diagram (OBDD) or variants thereof, such as multivalued decision diagram (MDD), are compact and efficient data structures suitable for dealing with large-scale problems. Two symbolic algorithms for evaluating the reliability of MFN, MFN_OBDD and MFN_MDD, are proposed in this paper. In the algorithms, several operating functions are defined to prune the generated decision diagrams. Thereby the state space of capacity combinations is further compressed and the operational complexity of the decision diagrams is further reduced. Meanwhile, the related theoretical proofs and complexity analysis are carried out. Experimental results show the following: (1) compared to the existing decomposition algorithm, the proposed algorithms take less memory space and fewer loops. (2) The number of nodes and the number of variables of MDD generated in MFN_MDD algorithm are much smaller than those of OBDD built in the MFN_OBDD algorithm. (3) In two cases with the same number of arcs, the proposed algorithms are more suitable for calculating the reliability of sparse networks

    Optical studies of structural phase transition in the vanadium-based kagome metal ScV6Sn6

    Full text link
    In condensed matter physics, materials with kagome lattice exhibit exotic emergent quantum states, including charge density wave (CDW), superconductivity and magnetism. Very recently, hexagonal kagome metal ScV6Sn6 was found to undergo fascinating first-order structural phase transition at around 92 K and a 3x3x3 CDW modulation. The bulk electronic band properties are enlightened for comprehending the origin of the structural phase transition. Here, we perform a optical spectroscopy study on the monocrystalline compound across the transition temperature. The structural transition gives rise to the abrupt changes of optical spectra without observing gap development behavior. The optical measurements revealed a sudden reconstruction of the band structure after transition. We emphasize that the phase transition is of the first order and distinctly different from the conventional density-wave type condensation. Our results provide insight into the origin of the structural phase transition in the new kagome metal compound.Comment: 7 pages, 4 figure

    Strong nonlinear optical response and transient symmetry switching in Type-II Weyl semimetal β\beta-WP2

    Full text link
    The topological Weyl semimetals with peculiar band structure exhibit novel nonlinear optical enhancement phenomena even for light at optical wavelengths. While many intriguing nonlinear optical effects were constantly uncovered in type-I semimetals, few experimental works focused on basic nonlinear optical properties in type-II Weyl semimetals. Here we perform a fundamental static and time-resolved second harmonic generation (SHG) on the three dimensional Type-II Weyl semimetal candidate β\beta-WP2_2. Although β\beta-WP2_2 exhibits extremely high conductivity and an extraordinarily large mean free path, the second harmonic generation is unscreened by conduction electrons, we observed rather strong SHG response compared to non-topological polar metals and archetypal ferroelectric insulators. Additionally, our time-resolved SHG experiment traces ultrafast symmetry switching and reveals that polar metal β\beta-WP2_2 tends to form inversion symmetric metastable state after photo-excitation. Intense femtosecond laser pulse could optically drive symmetry switching and tune nonlinear optical response on ultrafast timescales although the interlayer coupling of β\beta-WP2_2 is very strong. Our work is illuminating for the polar metal nonlinear optics and potential ultrafast topological optoelectronic applications.Comment: 8 pages, 5 figure

    Continuous Petri Nets Augmented With Maximal And Minimal Firing Speeds

    Get PDF
    CPNs has been a useful tool not only to approximate a discrete system but also to model a continuous process. In this paper, CPNs are augmented with maximal and minimal firing speeds, and Interval speed CPNs (ICPNs) is defined. The enabling and firing of transitions of ICPNs are discussed, and the enabling of continuous transitions is classified into three levels: 0-level, 1-level and 2-level. Some rules to calculate the instantaneous firing speeds are also developed. In addition, illustrative examples are presented

    SiameseDenseU-Net-based Semantic Segmentation of Urban Remote Sensing Images

    No full text
    Boundary pixel blur and category imbalance are common problems that occur during semantic segmentation of urban remote sensing images. Inspired by DenseU-Net, this paper proposes a new end-to-end network—SiameseDenseU-Net. First, the network simultaneously uses both true orthophoto (TOP) images and their corresponding normalized digital surface model (nDSM) as the input of the network structure. The deep image features are extracted in parallel by downsampling blocks. Information such as shallow textures and high-level abstract semantic features are fused throughout the connected channels. The features extracted by the two parallel processing chains are then fused. Finally, a softmax layer is used to perform prediction to generate dense label maps. Experiments on the Vaihingen dataset show that SiameseDenseU-Net improves the F1-score by 8.2% and 7.63% compared with the Hourglass-ShapeNetwork (HSN) model and with the U-Net model. Regarding the boundary pixels, when using the same focus loss function based on median frequency balance weighting, compared with the original DenseU-Net, the small-target “car” category F1-score of SiameseDenseU-Net improved by 0.92%. The overall accuracy and the average F1-score also improved to varying degrees. The proposed SiameseDenseU-Net is better at identifying small-target categories and boundary pixels, and it is numerically and visually superior to the contrast model

    EC-PPRA: An Energy Efficient Routing Protocol for Ad Hoc Networks

    No full text
    Abstract—A promising energy conserving technique for the Ad hoc network must maintain effective packet forwarding capacity when turning off the network interface for idle nodes to reduce power consumption. This paper incorporates the energy conserving technique with the Ant Colony routing protocol and proposes a new EC-PPRA routing algorithm. We use the pheromone mechanism to make routing decision while turning off the network interface of idle nodes adaptively to save energy. Based on the emulation of pheromone trail and biological behaviors of ants, EC-PPRA can control the pheromone trail concentration by changing the forwarding behavior of ant packets to reserve energy and maintain the packet forwarding capability at the same time. We perform extensive simulations to demonstrate the superiority of EC-PPRA over the existing protocols, such as PPRA, AODV. We show that EC-PPRA can significantly prolong the network lifetime by improving the average node residual energy and the number of live nodes
    corecore